(ML 14.1) Markov models - motivating examples
http://www.youtube.com/watch?v=7KGdE2AK_MQ
(ML 14.2) Markov chains (discrete-time) (part 1)
http://www.youtube.com/watch?v=WUjt98HcHlk
(ML 14.3) Markov chains (discrete-time) (part 2)
http://www.youtube.com/watch?v=j6OUj9tleVM
(ML 14.4) Hidden Markov models (HMMs) (part 1)
http://www.youtube.com/watch?v=TPRoLreU9lA
===========================================
The following lecture is a more detailed, intuitive explaination about HMMs
Very intuitive
http://www.youtube.com/watch?v=jY2E6ExLxaw
=============================================
HMM & stock prediction
http://www.slideshare.net/ChiuYW/hidden-markov-model-stock-prediction
JAVA– JHMM
Python– Scikit Learn
getSymbols("^TWII")
chartSeries(TWII)
TWII_Subset<- p="" start="as.Date(" window="">TWII_Train <- -="" cbind="" lose="" olume="" p="" pen="" twii_subset="" ubset="">
->->
library(RHmm)
# Baum-Welch Algorithm
hm_model <- hmmfit="" nstates="5)</p" obs="TWII_Train">
# Viterbi Algorithm
VitPath <- hm_model="" p="" twii_train="" viterbi="">
->->
addTA(TWII_Predict[TWII_Predict[,2]==1,1],on=1,type="p",col=5,pch=25)
addTA(TWII_Predict[TWII_Predict[,2]==2,1],on=1,type="p",col=6,pch=24)
addTA(TWII_Predict[TWII_Predict[,2]==3,1],on=1,type="p",col=7,pch=23)
addTA(TWII_Predict[TWII_Predict[,2]==4,1],on=1,type="p",col=8,pch=22)
addTA(TWII_Predict[TWII_Predict[,2]==5,1],on=1,type="p",col=10,pch=21)
->
No comments:
Post a Comment