- download and install MRO from https://mran.revolutionanalytics.com/download/
- install.packages("TTR")
- library("TTR")
- usindices $lt;- read.table("http://www2.stat.duke.edu/~mw/data-sets/ts_data/industrial_production", skip=20, header = F)
- colnames(usindices) $lt;- c("YR","MN", "IP", "MFG", "MFGD", "MFGN", "MIN", "UTIL", "P", "MAT")
- head(usindices)
install.packages("dplyr")
library(dplyr)
avg1 = summarise(group_by(usindices,YR),avg = mean(MFG))
plot(avg1)
install.packages("reshape")
library("reshape")
Thursday, September 19, 2013
time series analysis using R
Labels:
Big Data,
data analysis,
data mining,
data science,
R
Thursday, September 12, 2013
result of cloudera Inspect hosts for my experiement env in basement
Cluster Installation
Inspect hosts for correctness
Validations
Inspector failed on the following hosts... | |
Individual hosts resolved their own hostnames correctly. | |
No errors were found while looking for conflicting init scripts. | |
No errors were found while checking /etc/hosts. | |
All hosts resolved localhost to 127.0.0.1. | |
All hosts checked resolved each other's hostnames correctly. | |
Host clocks are approximately in sync (within ten minutes). | |
Host time zones are consistent across the cluster. | |
No users or groups are missing. | |
No kernel versions that are known to be bad are running. | |
No performance concerns with Transparent Huge Pages settings. | |
0 hosts are running CDH3 and 4 hosts are running CDH4. | |
All checked hosts are running the same version of components. | |
All managed hosts have consistent versions of Java. | |
All checked Cloudera Management Daemons versions are consistent with the server. | |
All checked Cloudera Management Agents versions are consistent with the server. |
Version Summary
Group 1 (CDH4) | ||
Hosts | ||
---|---|---|
cent63VM01, cent63VM02, cent63VM03, cent63VM04 | ||
Component | Version | CDH Version |
Impala | 1.1.1 | Not applicable |
Lily HBase Indexer (CDH4 only) | 1.2+2 | Not applicable |
Solr (CDH4 only) | 4.4.0+69 | Not applicable |
Flume NG | 1.4.0+23 | CDH4 |
MapReduce 1 (CDH4 only) | 2.0.0+1475 | CDH4 |
HDFS (CDH4 only) | 2.0.0+1475 | CDH4 |
HttpFS (CDH4 only) | 2.0.0+1475 | CDH4 |
MapReduce 2 (CDH4 only) | 2.0.0+1475 | CDH4 |
Yarn (CDH4 only) | 2.0.0+1475 | CDH4 |
Hadoop | 2.0.0+1475 | CDH4 |
HBase | 0.94.6+132 | CDH4 |
HCatalog (CDH4 only) | 0.5.0+13 | CDH4 |
Hive | 0.10.0+198 | CDH4 |
Mahout | 0.7+21 | CDH4 |
Oozie | 3.3.2+92 | CDH4 |
Pig | 0.11.0+33 | CDH4 |
Sqoop | 1.4.3+62 | CDH4 |
Sqoop2 (CDH4 only) | 1.99.2+85 | CDH4 |
Whirr | 0.8.2+15 | CDH4 |
Zookeeper | 3.4.5+23 | CDH4 |
Hue | 2.5.0+139 | CDH4 |
Java | java version "1.6.0_31" Java(TM) SE Runtime Environment (build 1.6.0_31-b04) Java HotSpot(TM) 64-Bit Server VM (build 20.6-b01, mixed mode) | Not applicable |
Cloudera Manager Agent | 4.7.1 | Not applicable |
Wednesday, September 11, 2013
Collection of lecture on Markov Chains & Hidden Markov Models
The first set of lectures introduce markov model, markov chains, and extend the markov chain to HMMs
(ML 14.1) Markov models - motivating examples
http://www.youtube.com/watch?v=7KGdE2AK_MQ
(ML 14.2) Markov chains (discrete-time) (part 1)
http://www.youtube.com/watch?v=WUjt98HcHlk
(ML 14.3) Markov chains (discrete-time) (part 2)
http://www.youtube.com/watch?v=j6OUj9tleVM
(ML 14.4) Hidden Markov models (HMMs) (part 1)
http://www.youtube.com/watch?v=TPRoLreU9lA
===========================================
The following lecture is a more detailed, intuitive explaination about HMMs
Very intuitive
http://www.youtube.com/watch?v=jY2E6ExLxaw
=============================================
HMM & stock prediction
http://www.slideshare.net/ChiuYW/hidden-markov-model-stock-prediction
TOOL KIT
R Package– HMM– RHMM
JAVA– JHMM
Python– Scikit Learn
DEMO
GET
DATASET
library(quantmod)
getSymbols("^TWII")
chartSeries(TWII)
TWII_Subset<- p="" start="as.Date(" window="">TWII_Train <- -="" cbind="" lose="" olume="" p="" pen="" twii_subset="" ubset="">
->->
BUILD HMM MODEL
#
Include RHMM Library
library(RHmm)
# Baum-Welch Algorithm
hm_model <- hmmfit="" nstates="5)</p" obs="TWII_Train">
# Viterbi Algorithm
VitPath <- hm_model="" p="" twii_train="" viterbi="">
->->
SCATTER PLOT
TWII_Predict <- cbind="" lose="" p="" states="" ubset="" vitpath="">
chartSeries(TWII_Predict[,1])
addTA(TWII_Predict[TWII_Predict[,2]==1,1],on=1,type="p",col=5,pch=25)
addTA(TWII_Predict[TWII_Predict[,2]==2,1],on=1,type="p",col=6,pch=24)
addTA(TWII_Predict[TWII_Predict[,2]==3,1],on=1,type="p",col=7,pch=23)
addTA(TWII_Predict[TWII_Predict[,2]==4,1],on=1,type="p",col=8,pch=22)
addTA(TWII_Predict[TWII_Predict[,2]==5,1],on=1,type="p",col=10,pch=21)
->
(ML 14.1) Markov models - motivating examples
http://www.youtube.com/watch?v=7KGdE2AK_MQ
(ML 14.2) Markov chains (discrete-time) (part 1)
http://www.youtube.com/watch?v=WUjt98HcHlk
(ML 14.3) Markov chains (discrete-time) (part 2)
http://www.youtube.com/watch?v=j6OUj9tleVM
(ML 14.4) Hidden Markov models (HMMs) (part 1)
http://www.youtube.com/watch?v=TPRoLreU9lA
===========================================
The following lecture is a more detailed, intuitive explaination about HMMs
Very intuitive
http://www.youtube.com/watch?v=jY2E6ExLxaw
=============================================
HMM & stock prediction
http://www.slideshare.net/ChiuYW/hidden-markov-model-stock-prediction
JAVA– JHMM
Python– Scikit Learn
getSymbols("^TWII")
chartSeries(TWII)
TWII_Subset<- p="" start="as.Date(" window="">TWII_Train <- -="" cbind="" lose="" olume="" p="" pen="" twii_subset="" ubset="">
->->
library(RHmm)
# Baum-Welch Algorithm
hm_model <- hmmfit="" nstates="5)</p" obs="TWII_Train">
# Viterbi Algorithm
VitPath <- hm_model="" p="" twii_train="" viterbi="">
->->
addTA(TWII_Predict[TWII_Predict[,2]==1,1],on=1,type="p",col=5,pch=25)
addTA(TWII_Predict[TWII_Predict[,2]==2,1],on=1,type="p",col=6,pch=24)
addTA(TWII_Predict[TWII_Predict[,2]==3,1],on=1,type="p",col=7,pch=23)
addTA(TWII_Predict[TWII_Predict[,2]==4,1],on=1,type="p",col=8,pch=22)
addTA(TWII_Predict[TWII_Predict[,2]==5,1],on=1,type="p",col=10,pch=21)
->
Labels:
Big Data,
data analysis,
data mining
Sunday, September 8, 2013
HBase install and performance test
- download hbase.
[hadoopuser@cent63VM01 app]$ wget http://apache.osuosl.org/hbase/stable/hbase-0.94.2.tar.gz
- untar the file
[hadoopuser@cent63VM01 app]$ tar xvf hbase-0.94.2.tar.gz
-
create a soft link for HBase.
[hadoopuser@cent63VM01 app]$ ln -s /hadoop/hbase-0.94.2/ /hbase
-
copy sample configuration file.
[hadoopuser@cent63VM01 app]$ cp /hbase/sr/resources/hbase-default.xml /hbase/conf/hbase-site.xml
-
Edit hbase-site.xml as below.
sfds
-
copy configuration files to all nodes..
sfdsrsync -avz ./hbase-0.94.2 hadoopuser@cent63V4.corp.ybusa.net:/hadoop/
-
Zookeeper's port numbers are troublesome. To be simple, I disable the firewall.
service iptables status service save iptables service stop iptables chkconfig iptables off
system-config-firewall open HBase REST port 8080; open port 60000 and 60010 for master. for eegional server open port 60020 and port 60030; for zookeeper, open port 2888, 3888, 2181
check file /etc/hosts
rm -Rf /tmp/hadoop-username clean data fo
service iptables status
service save iptables
service stop iptables
chkconfig iptables off
HBase performance testing wity ycsb 0.1.4
http://johnjianfang.blogspot.com/2012/09/hbase-performance-testing-wity-ycsb-014.html
Hbase 错误记录及修改方法
http://blog.csdn.net/kntao/article/details/7642547
yum install java-1.6.0-openjdk java-1.6.0-openjdk-devel
Hbase 错误记录及修改方法
http://blog.csdn.net/kntao/article/details/7642547
yum install java-1.6.0-openjdk java-1.6.0-openjdk-devel
Subscribe to:
Posts (Atom)